A Module is a collection of methods and constants. The methods in a module may be instance methods or module methods. Instance methods appear as methods in a class when the module is included, module methods do not. Conversely, module methods may be called without creating an encapsulating object, while instance methods may not. (See Module#module_function.)

In the descriptions that follow, the parameter sym refers to a symbol, which is either a quoted string or a Symbol (such as :name).

module Mod
  include Math
  CONST = 1
  def meth
    #  ...
  end
end
Mod.class              #=> Module
Mod.constants          #=> [:CONST, :PI, :E]
Mod.instance_methods   #=> [:meth]
Methods
#
A
C
D
F
I
M
N
P
R
S
T
Y
Class Public methods
Module.constants → array
Module.constants(inherited) → array

In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.

Module.constants.first(4)
   # => [:ARGF, :ARGV, :ArgumentError, :Array]

Module.constants.include?(:SEEK_SET)   # => false

class IO
  Module.constants.include?(:SEEK_SET) # => true
end

The second form calls the instance method constants.

static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE klass;
    VALUE cbase = 0;
    void *data = 0;

    if (argc > 0 || mod != rb_cModule) {
        return rb_mod_constants(argc, argv, mod);
    }

    while (cref) {
        klass = CREF_CLASS(cref);
        if (!CREF_PUSHED_BY_EVAL(cref) &&
            !NIL_P(klass)) {
            data = rb_mod_const_at(CREF_CLASS(cref), data);
            if (!cbase) {
                cbase = klass;
            }
        }
        cref = CREF_NEXT(cref);
    }

    if (cbase) {
        data = rb_mod_const_of(cbase, data);
    }
    return rb_const_list(data);
}
Module.nesting → array

Returns the list of Modules nested at the point of call.

module M1
  module M2
    $a = Module.nesting
  end
end
$a           #=> [M1::M2, M1]
$a[0].name   #=> "M1::M2"
static VALUE
rb_mod_nesting(void)
{
    VALUE ary = rb_ary_new();
    const rb_cref_t *cref = rb_vm_cref();

    while (cref && CREF_NEXT(cref)) {
        VALUE klass = CREF_CLASS(cref);
        if (!CREF_PUSHED_BY_EVAL(cref) &&
            !NIL_P(klass)) {
            rb_ary_push(ary, klass);
        }
        cref = CREF_NEXT(cref);
    }
    return ary;
}
Module.new → mod
Module.new {|mod| block } → mod

Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module using module_eval.

fred = Module.new do
  def meth1
    "hello"
  end
  def meth2
    "bye"
  end
end
a = "my string"
a.extend(fred)   #=> "my string"
a.meth1          #=> "hello"
a.meth2          #=> "bye"

Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.

static VALUE
rb_mod_initialize(VALUE module)
{
    if (rb_block_given_p()) {
        rb_mod_module_exec(1, &module, module);
    }
    return Qnil;
}
Instance Public methods
mod < other → true, false, or nil

Returns true if mod is a subclass of other. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “A<B”.)

static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_class_inherited_p(mod, arg);
}
mod <= other → true, false, or nil

Returns true if mod is a subclass of other or is the same as other. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “A<B”.)

VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
    VALUE start = mod;

    if (mod == arg) return Qtrue;
    if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
        rb_raise(rb_eTypeError, "compared with non class/module");
    }
    arg = RCLASS_ORIGIN(arg);
    if (class_search_ancestor(mod, arg)) {
        return Qtrue;
    }
    /* not mod < arg; check if mod > arg */
    if (class_search_ancestor(arg, start)) {
        return Qfalse;
    }
    return Qnil;
}
module <=> other_module → -1, 0, +1, or nil

Comparison—Returns -1, 0, +1 or nil depending on whether module includes other_module, they are the same, or if module is included by other_module.

Returns nil if module has no relationship with other_module, if other_module is not a module, or if the two values are incomparable.

static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
    VALUE cmp;

    if (mod == arg) return INT2FIX(0);
    if (!CLASS_OR_MODULE_P(arg)) {
        return Qnil;
    }

    cmp = rb_class_inherited_p(mod, arg);
    if (NIL_P(cmp)) return Qnil;
    if (cmp) {
        return INT2FIX(-1);
    }
    return INT2FIX(1);
}
obj == other → true or false
obj.equal?(other) → true or false
obj.eql?(other) → true or false

Equality — At the Object level, == returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike ==, the equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      #=> true
obj.equal? other  #=> false
obj.equal? obj    #=> true

The eql? method returns true if obj and other refer to the same hash key. This is used by Hash to test members for equality. For objects of class Object, eql? is synonymous with ==. Subclasses normally continue this tradition by aliasing eql? to their overridden == method, but there are exceptions. Numeric types, for example, perform type conversion across ==, but not across eql?, so:

1 == 1.0     #=> true
1.eql? 1.0   #=> false
VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
    if (obj1 == obj2) return Qtrue;
    return Qfalse;
}
mod === obj → true or false

Case Equality—Returns true if obj is an instance of mod or and instance of one of mod's descendants. Of limited use for modules, but can be used in case statements to classify objects by class.

static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
    return rb_obj_is_kind_of(arg, mod);
}
mod > other → true, false, or nil

Returns true if mod is an ancestor of other. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “B>A”.)

static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_mod_ge(mod, arg);
}
mod >= other → true, false, or nil

Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “B>A”.)

static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
    if (!CLASS_OR_MODULE_P(arg)) {
        rb_raise(rb_eTypeError, "compared with non class/module");
    }

    return rb_class_inherited_p(arg, mod);
}
mod.ancestors → array

Returns a list of modules included/prepended in mod (including mod itself).

module Mod
  include Math
  include Comparable
  prepend Enumerable
end

Mod.ancestors        #=> [Enumerable, Mod, Comparable, Math]
Math.ancestors       #=> [Math]
Enumerable.ancestors #=> [Enumerable]
VALUE
rb_mod_ancestors(VALUE mod)
{
    VALUE p, ary = rb_ary_new();

    for (p = mod; p; p = RCLASS_SUPER(p)) {
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    rb_ary_push(ary, RBASIC(p)->klass);
	}
	else if (p == RCLASS_ORIGIN(p)) {
	    rb_ary_push(ary, p);
	}
    }
    return ary;
}
mod.autoload(module, filename) → nil

Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed in the namespace of mod.

module A
end
A.autoload(:B, "b")
A::B.doit            # autoloads "b"
static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
    ID id = rb_to_id(sym);

    FilePathValue(file);
    rb_autoload_str(mod, id, file);
    return Qnil;
}
mod.autoload?(name) → String or nil

Returns filename to be loaded if name is registered as autoload in the namespace of mod.

module A
end
A.autoload(:B, "b")
A.autoload?(:B)            #=> "b"
static VALUE
rb_mod_autoload_p(VALUE mod, VALUE sym)
{
    ID id = rb_check_id(&sym);
    if (!id) {
        return Qnil;
    }
    return rb_autoload_p(mod, id);
}
mod.class_eval(string [, filename [, lineno]]) → obj

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class
VALUE
rb_mod_module_eval(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod);
}
mod.class_exec(arg...) {|var...| block } → obj

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!
VALUE
rb_mod_module_exec(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
obj.class_variable_defined?(symbol) → true or false
obj.class_variable_defined?(string) → true or false

Returns true if the given class variable is defined in obj. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_defined?(:@@foo)    #=> true
Fred.class_variable_defined?(:@@bar)    #=> false
static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, a, class);

    if (!id) {
        return Qfalse;
    }
    return rb_cvar_defined(obj, id);
}
mod.class_variable_get(symbol) → obj
mod.class_variable_get(string) → obj

Returns the value of the given class variable (or throws a NameError exception). The @@ part of the variable name should be included for regular class variables. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_get(:@@foo)     #=> 99
static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, a, class);

    if (!id) {
        rb_name_err_raise("uninitialized class variable %1$s in %2$s",
                          obj, iv);
    }
    return rb_cvar_get(obj, id);
}
obj.class_variable_set(symbol, obj) → obj
obj.class_variable_set(string, obj) → obj

Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.

class Fred
  @@foo = 99
  def foo
    @@foo
  end
end
Fred.class_variable_set(:@@foo, 101)     #=> 101
Fred.new.foo                             #=> 101
static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
    ID id = id_for_var(obj, iv, a, class);
    if (!id) id = rb_intern_str(iv);
    rb_cvar_set(obj, id, val);
    return val;
}
mod.class_variables(inherit=true) → array

Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false.

class One
  @@var1 = 1
end
class Two < One
  @@var2 = 2
end
One.class_variables          #=> [:@@var1]
Two.class_variables          #=> [:@@var2, :@@var1]
Two.class_variables(false)   #=> [:@@var2]
VALUE
rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod)
{
    VALUE inherit;
    st_table *tbl;

    if (argc == 0) {
	inherit = Qtrue;
    }
    else {
	rb_scan_args(argc, argv, "01", &inherit);
    }
    if (RTEST(inherit)) {
	tbl = mod_cvar_of(mod, 0);
    }
    else {
	tbl = mod_cvar_at(mod, 0);
    }
    return cvar_list(tbl);
}
mod.const_defined?(sym, inherit=true) → true or false
mod.const_defined?(str, inherit=true) → true or false

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar
static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return Qfalse;
        return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
        rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else {
                return Qfalse;
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }
        if (RTEST(recur)) {
            if (!rb_const_defined(mod, id))
                return Qfalse;
            mod = rb_const_get(mod, id);
        }
        else {
            if (!rb_const_defined_at(mod, id))
                return Qfalse;
            mod = rb_const_get_at(mod, id);
        }
        recur = Qfalse;

        if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
            rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                     QUOTE(name));
        }
    }

    return Qtrue;
}
mod.const_get(sym, inherit=true) → obj
mod.const_get(str, inherit=true) → obj

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_get 'foobar' #=> NameError: wrong constant name foobar
static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return rb_const_missing(mod, name);
        return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
        rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
            rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                     QUOTE(name));
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
                part = rb_str_intern(part);
                mod = rb_const_missing(mod, part);
                continue;
            }
            else {
                rb_mod_const_missing(mod, part);
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }
        mod = RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    return mod;
}
mod.const_missing(sym) → obj

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:

def Foo.const_missing(name)
  name # return the constant name as Symbol
end

Foo::UNDEFINED_CONST    #=> :UNDEFINED_CONST: symbol returned

In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred is assumed to be in file fred.rb). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and #autoload.

def Object.const_missing(name)
  @looked_for ||= {}
  str_name = name.to_s
  raise "Class not found: #{name}" if @looked_for[str_name]
  @looked_for[str_name] = 1
  file = str_name.downcase
  require file
  klass = const_get(name)
  return klass if klass
  raise "Class not found: #{name}"
end
VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
    rb_vm_pop_cfunc_frame();
    uninitialized_constant(klass, name);

    UNREACHABLE;
}
mod.const_set(sym, obj) → obj
mod.const_set(str, obj) → obj

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
    ID id = id_for_setter(mod, name, const, wrong_constant_name);
    if (!id) id = rb_intern_str(name);
    rb_const_set(mod, id, value);
    return value;
}
mod.constants(inherit=true) → array

Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false.

The implementation makes no guarantees about the order in which the constants are yielded.

IO.constants.include?(:SYNC)        #=> true
IO.constants(false).include?(:SYNC) #=> false

Also see Module::const_defined?.

VALUE
rb_mod_constants(int argc, const VALUE *argv, VALUE mod)
{
    VALUE inherit;

    if (argc == 0) {
	inherit = Qtrue;
    }
    else {
	rb_scan_args(argc, argv, "01", &inherit);
    }

    if (RTEST(inherit)) {
	return rb_const_list(rb_mod_const_of(mod, 0));
    }
    else {
	return rb_local_constants(mod);
    }
}
deprecate_constant(*args)
VALUE
rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED);
    return obj;
}
mod.freeze → mod

Prevents further modifications to mod.

This method returns self.

static VALUE
rb_mod_freeze(VALUE mod)
{
    rb_class_name(mod);
    return rb_obj_freeze(mod);
}
include(module, ...) → self

Invokes Module.append_features on each parameter in reverse order.

static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_append_features, id_included;

    CONST_ID(id_append_features, "append_features");
    CONST_ID(id_included, "included");

    for (i = 0; i < argc; i++)
        Check_Type(argv[i], T_MODULE);
    while (argc--) {
        rb_funcall(argv[argc], id_append_features, 1, module);
        rb_funcall(argv[argc], id_included, 1, module);
    }
    return module;
}
mod.include?(module) → true or false

Returns true if module is included in mod or one of mod's ancestors.

module A
end
class B
  include A
end
class C < B
end
B.include?(A)   #=> true
C.include?(A)   #=> true
A.include?(A)   #=> false
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
    VALUE p;

    Check_Type(mod2, T_MODULE);
    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    if (RBASIC(p)->klass == mod2) return Qtrue;
	}
    }
    return Qfalse;
}
mod.included_modules → array

Returns the list of modules included in mod.

module Mixin
end

module Outer
  include Mixin
end

Mixin.included_modules   #=> []
Outer.included_modules   #=> [Mixin]
VALUE
rb_mod_included_modules(VALUE mod)
{
    VALUE ary = rb_ary_new();
    VALUE p;
    VALUE origin = RCLASS_ORIGIN(mod);

    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (p != origin && BUILTIN_TYPE(p) == T_ICLASS) {
	    VALUE m = RBASIC(p)->klass;
	    if (RB_TYPE_P(m, T_MODULE))
		rb_ary_push(ary, m);
	}
    }
    return ary;
}
inspect()
Alias for: to_s
mod.instance_method(symbol) → unbound_method

Returns an UnboundMethod representing the given instance method in mod.

class Interpreter
  def do_a() print "there, "; end
  def do_d() print "Hello ";  end
  def do_e() print "!\n";     end
  def do_v() print "Dave";    end
  Dispatcher = {
    "a" => instance_method(:do_a),
    "d" => instance_method(:do_d),
    "e" => instance_method(:do_e),
    "v" => instance_method(:do_v)
  }
  def interpret(string)
    string.each_char {|b| Dispatcher[b].bind(self).call }
  end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!
static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
        rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}
mod.instance_methods(include_super=true) → array

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false, the methods of any ancestors are not included.

module A
  def method1()  end
end
class B
  include A
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods(false)                   #=> [:method1]
B.instance_methods(false)                   #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false)                   #=> [:method3]
C.instance_methods.include?(:method2)       #=> true
VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}
mod.method_defined?(symbol) → true or false
mod.method_defined?(string) → true or false

Returns true if the named method is defined by mod (or its included modules and, if mod is a class, its ancestors). Public and protected methods are matched. String arguments are converted to symbols.

module A
  def method1()  end
  def protected_method1()  end
  protected :protected_method1
end
class B
  def method2()  end
  def private_method2()  end
  private :private_method2
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1              #=> true
C.method_defined? "method1"             #=> true
C.method_defined? "method2"             #=> true
C.method_defined? "method3"             #=> true
C.method_defined? "protected_method1"   #=> true
C.method_defined? "method4"             #=> false
C.method_defined? "private_method2"     #=> false
static VALUE
rb_mod_method_defined(VALUE mod, VALUE mid)
{
    ID id = rb_check_id(&mid);
    if (!id || !rb_method_boundp(mod, id, 1)) {
        return Qfalse;
    }
    return Qtrue;

}
mod.module_eval {|| block } → obj

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class
VALUE
rb_mod_module_eval(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod);
}
mod.module_exec(arg...) {|var...| block } → obj

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!
VALUE
rb_mod_module_exec(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
mod.name → string

Returns the name of the module mod. Returns nil for anonymous modules.

VALUE
rb_mod_name(VALUE mod)
{
    int permanent;
    VALUE path = classname(mod, &permanent);

    if (!NIL_P(path)) return rb_str_dup(path);
    return path;
}
prepend(module, ...) → self

Invokes Module.prepend_features on each parameter in reverse order.

static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_prepend_features, id_prepended;

    CONST_ID(id_prepend_features, "prepend_features");
    CONST_ID(id_prepended, "prepended");
    for (i = 0; i < argc; i++)
        Check_Type(argv[i], T_MODULE);
    while (argc--) {
        rb_funcall(argv[argc], id_prepend_features, 1, module);
        rb_funcall(argv[argc], id_prepended, 1, module);
    }
    return module;
}
mod.private_class_method(symbol, ...) → mod
mod.private_class_method(string, ...) → mod

Makes existing class methods private. Often used to hide the default constructor new.

String arguments are converted to symbols.

class SimpleSingleton  # Not thread safe
  private_class_method :new
  def SimpleSingleton.create(*args, &block)
    @me = new(*args, &block) if ! @me
    @me
  end
end
static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PRIVATE);
    return obj;
}
mod.private_constant(symbol, ...) => mod

Makes a list of existing constants private.

VALUE
rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK);
    return obj;
}
mod.private_instance_methods(include_super=true) → array

Returns a list of the private instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

module Mod
  def method1()  end
  private :method1
  def method2()  end
end
Mod.instance_methods           #=> [:method2]
Mod.private_instance_methods   #=> [:method1]
VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}
mod.private_method_defined?(symbol) → true or false
mod.private_method_defined?(string) → true or false

Returns true if the named private method is defined by _ mod_ (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  private
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1            #=> true
C.private_method_defined? "method1"   #=> false
C.private_method_defined? "method2"   #=> true
C.method_defined? "method2"           #=> false
static VALUE
rb_mod_private_method_defined(VALUE mod, VALUE mid)
{
    return check_definition(mod, mid, METHOD_VISI_PRIVATE);
}
mod.protected_instance_methods(include_super=true) → array

Returns a list of the protected instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}
mod.protected_method_defined?(symbol) → true or false
mod.protected_method_defined?(string) → true or false

Returns true if the named protected method is defined by mod (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1              #=> true
C.protected_method_defined? "method1"   #=> false
C.protected_method_defined? "method2"   #=> true
C.method_defined? "method2"             #=> true
static VALUE
rb_mod_protected_method_defined(VALUE mod, VALUE mid)
{
    return check_definition(mod, mid, METHOD_VISI_PROTECTED);
}
psych_yaml_as(url)
Also aliased as: yaml_as
# File ext/psych/lib/psych/core_ext.rb, line 22
def psych_yaml_as url
  return if caller[0].end_with?('rubytypes.rb')
  if $VERBOSE
    warn "#{caller[0]}: yaml_as is deprecated, please use yaml_tag"
  end
  Psych.add_tag(url, self)
end
mod.public_class_method(symbol, ...) → mod
mod.public_class_method(string, ...) → mod

Makes a list of existing class methods public.

String arguments are converted to symbols.

static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PUBLIC);
    return obj;
}
mod.public_constant(symbol, ...) => mod

Makes a list of existing constants public.

VALUE
rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK);
    return obj;
}
mod.public_instance_method(symbol) → unbound_method

Similar to instance_method, searches public method only.

static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
        rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}
mod.public_instance_methods(include_super=true) → array

Returns a list of the public instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}
mod.public_method_defined?(symbol) → true or false
mod.public_method_defined?(string) → true or false

Returns true if the named public method is defined by mod (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1           #=> true
C.public_method_defined? "method1"   #=> true
C.public_method_defined? "method2"   #=> false
C.method_defined? "method2"          #=> true
static VALUE
rb_mod_public_method_defined(VALUE mod, VALUE mid)
{
    return check_definition(mod, mid, METHOD_VISI_PUBLIC);
}
remove_class_variable(sym) → obj

Removes the definition of the sym, returning that constant's value.

class Dummy
  @@var = 99
  puts @@var
  remove_class_variable(:@@var)
  p(defined? @@var)
end

produces:

99
nil
VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
    const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s");
    st_data_t val, n = id;

    if (!id) {
      not_defined:
	rb_name_err_raise("class variable %1$s not defined for %2$s",
			  mod, name);
    }
    rb_check_frozen(mod);
    if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) {
	return (VALUE)val;
    }
    if (rb_cvar_defined(mod, id)) {
	rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id));
    }
    goto not_defined;
}
mod.singleton_class? → true or false

Returns true if mod is a singleton class or false if it is an ordinary class or module.

class C
end
C.singleton_class?                  #=> false
C.singleton_class.singleton_class?  #=> true
static VALUE
rb_mod_singleton_p(VALUE klass)
{
    if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON))
        return Qtrue;
    return Qfalse;
}
mod.to_s → string

Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we're attached to as well.

Also aliased as: inspect
static VALUE
rb_mod_to_s(VALUE klass)
{
    ID id_defined_at;
    VALUE refined_class, defined_at;

    if (FL_TEST(klass, FL_SINGLETON)) {
        VALUE s = rb_usascii_str_new2("#<Class:");
        VALUE v = rb_ivar_get(klass, id__attached__);

        if (CLASS_OR_MODULE_P(v)) {
            rb_str_append(s, rb_inspect(v));
        }
        else {
            rb_str_append(s, rb_any_to_s(v));
        }
        rb_str_cat2(s, ">");

        return s;
    }
    refined_class = rb_refinement_module_get_refined_class(klass);
    if (!NIL_P(refined_class)) {
        VALUE s = rb_usascii_str_new2("#<refinement:");

        rb_str_concat(s, rb_inspect(refined_class));
        rb_str_cat2(s, "@");
        CONST_ID(id_defined_at, "__defined_at__");
        defined_at = rb_attr_get(klass, id_defined_at);
        rb_str_concat(s, rb_inspect(defined_at));
        rb_str_cat2(s, ">");
        return s;
    }
    return rb_str_dup(rb_class_name(klass));
}
yaml_as(url)
Alias for: psych_yaml_as