The Matrix class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties (trace, rank, inverse, determinant).

Method Catalogue

To create a matrix:

To access Matrix elements/columns/rows/submatrices/properties:

Properties of a matrix:

Matrix arithmetic:

Matrix functions:

Matrix decompositions:

Complex arithmetic:

  • conj

  • conjugate

  • imag

  • imaginary

  • real

  • rect

  • rectangular

Conversion to other data types:

String representations:

frozen_string_literal: false

frozen_string_literal: false

Namespace
Methods
#
I
#
A
B
C
D
E
F
H
I
L
M
N
O
P
R
S
T
U
V
Z
Included Modules
Constants
SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
 
Attributes
[R] column_count

Returns the number of columns.

[R] column_size

Returns the number of columns.

[R] rows

instance creations

Class Public methods
I(n)
Alias for: identity
[](*rows)

Creates a matrix where each argument is a row.

Matrix[ [25, 93], [-1, 66] ]
   =>  25 93
       -1 66
# File lib/matrix.rb, line 152
def Matrix.[](*rows)
  rows(rows, false)
end
build(row_count, column_count = row_count)

Creates a matrix of size row_count x column_count. It fills the values by calling the given block, passing the current row and column. Returns an enumerator if no block is given.

m = Matrix.build(2, 4) {|row, col| col - row }
  => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
m = Matrix.build(3) { rand }
  => a 3x3 matrix with random elements
# File lib/matrix.rb, line 197
def Matrix.build(row_count, column_count = row_count)
  row_count = CoercionHelper.coerce_to_int(row_count)
  column_count = CoercionHelper.coerce_to_int(column_count)
  raise ArgumentError if row_count < 0 || column_count < 0
  return to_enum :build, row_count, column_count unless block_given?
  rows = Array.new(row_count) do |i|
    Array.new(column_count) do |j|
      yield i, j
    end
  end
  new rows, column_count
end
column_vector(column)

Creates a single-column matrix where the values of that column are as given in column.

Matrix.column_vector([4,5,6])
  => 4
     5
     6
# File lib/matrix.rb, line 283
def Matrix.column_vector(column)
  column = convert_to_array(column)
  new [column].transpose, 1
end
columns(columns)

Creates a matrix using columns as an array of column vectors.

Matrix.columns([[25, 93], [-1, 66]])
   =>  25 -1
       93 66
# File lib/matrix.rb, line 182
def Matrix.columns(columns)
  rows(columns, false).transpose
end
diagonal(*values)

Creates a matrix where the diagonal elements are composed of values.

Matrix.diagonal(9, 5, -3)
  =>  9  0  0
      0  5  0
      0  0 -3
# File lib/matrix.rb, line 217
def Matrix.diagonal(*values)
  size = values.size
  return Matrix.empty if size == 0
  rows = Array.new(size) {|j|
    row = Array.new(size, 0)
    row[j] = values[j]
    row
  }
  new rows
end
empty(row_count = 0, column_count = 0)

Creates a empty matrix of row_count x column_count. At least one of row_count or column_count must be 0.

m = Matrix.empty(2, 0)
m == Matrix[ [], [] ]
  => true
n = Matrix.empty(0, 3)
n == Matrix.columns([ [], [], [] ])
  => true
m * n
  => Matrix[[0, 0, 0], [0, 0, 0]]
# File lib/matrix.rb, line 301
def Matrix.empty(row_count = 0, column_count = 0)
  raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
  raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0

  new([[]]*row_count, column_count)
end
hstack(x, *matrices)

Create a matrix by stacking matrices horizontally

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
# File lib/matrix.rb, line 336
def Matrix.hstack(x, *matrices)
  raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix)
  result = x.send(:rows).map(&:dup)
  total_column_count = x.column_count
  matrices.each do |m|
    raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix)
    if m.row_count != x.row_count
      raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}"
    end
    result.each_with_index do |row, i|
      row.concat m.send(:rows)[i]
    end
    total_column_count += m.column_count
  end
  new result, total_column_count
end
identity(n)

Creates an n by n identity matrix.

Matrix.identity(2)
  => 1 0
     0 1
Also aliased as: unit, I
# File lib/matrix.rb, line 245
def Matrix.identity(n)
  scalar(n, 1)
end
new(rows, column_count = rows[0].size)

::new is private; use ::rows, columns, [], etc… to create.

# File lib/matrix.rb, line 356
def initialize(rows, column_count = rows[0].size)
  # No checking is done at this point. rows must be an Array of Arrays.
  # column_count must be the size of the first row, if there is one,
  # otherwise it *must* be specified and can be any integer >= 0
  @rows = rows
  @column_count = column_count
end
row_vector(row)

Creates a single-row matrix where the values of that row are as given in row.

Matrix.row_vector([4,5,6])
  => 4 5 6
# File lib/matrix.rb, line 270
def Matrix.row_vector(row)
  row = convert_to_array(row)
  new [row]
end
rows(rows, copy = true)

Creates a matrix where rows is an array of arrays, each of which is a row of the matrix. If the optional argument copy is false, use the given arrays as the internal structure of the matrix without copying.

Matrix.rows([[25, 93], [-1, 66]])
   =>  25 93
       -1 66
# File lib/matrix.rb, line 164
def Matrix.rows(rows, copy = true)
  rows = convert_to_array(rows, copy)
  rows.map! do |row|
    convert_to_array(row, copy)
  end
  size = (rows[0] || []).size
  rows.each do |row|
    raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
  end
  new rows, size
end
scalar(n, value)

Creates an n by n diagonal matrix where each diagonal element is value.

Matrix.scalar(2, 5)
  => 5 0
     0 5
# File lib/matrix.rb, line 235
def Matrix.scalar(n, value)
  diagonal(*Array.new(n, value))
end
unit(n)
Alias for: identity
vstack(x, *matrices)

Create a matrix by stacking matrices vertically

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
# File lib/matrix.rb, line 315
def Matrix.vstack(x, *matrices)
  raise TypeError, "Expected a Matrix, got a #{x.class}" unless x.is_a?(Matrix)
  result = x.send(:rows).map(&:dup)
  matrices.each do |m|
    raise TypeError, "Expected a Matrix, got a #{m.class}" unless m.is_a?(Matrix)
    if m.column_count != x.column_count
      raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}"
    end
    result.concat(m.send(:rows))
  end
  new result, x.column_count
end
zero(row_count, column_count = row_count)

Creates a zero matrix.

Matrix.zero(2)
  => 0 0
     0 0
# File lib/matrix.rb, line 259
def Matrix.zero(row_count, column_count = row_count)
  rows = Array.new(row_count){Array.new(column_count, 0)}
  new rows, column_count
end
Instance Public methods
*(m)

Matrix multiplication.

Matrix[[2,4], [6,8]] * Matrix.identity(2)
  => 2 4
     6 8
# File lib/matrix.rb, line 953
def *(m) # m is matrix or vector or number
  case(m)
  when Numeric
    rows = @rows.collect {|row|
      row.collect {|e| e * m }
    }
    return new_matrix rows, column_count
  when Vector
    m = self.class.column_vector(m)
    r = self * m
    return r.column(0)
  when Matrix
    Matrix.Raise ErrDimensionMismatch if column_count != m.row_count

    rows = Array.new(row_count) {|i|
      Array.new(m.column_count) {|j|
        (0 ... column_count).inject(0) do |vij, k|
          vij + self[i, k] * m[k, j]
        end
      }
    }
    return new_matrix rows, m.column_count
  else
    return apply_through_coercion(m, __method__)
  end
end
**(other)

Matrix exponentiation. Equivalent to multiplying the matrix by itself N times. Non integer exponents will be handled by diagonalizing the matrix.

Matrix[[7,6], [3,9]] ** 2
  => 67 96
     48 99
# File lib/matrix.rb, line 1120
def ** (other)
  case other
  when Integer
    x = self
    if other <= 0
      x = self.inverse
      return self.class.identity(self.column_count) if other == 0
      other = -other
    end
    z = nil
    loop do
      z = z ? z * x : x if other[0] == 1
      return z if (other >>= 1).zero?
      x *= x
    end
  when Numeric
    v, d, v_inv = eigensystem
    v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
  else
    Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
  end
end
+(m)

Matrix addition.

Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
  =>  6  0
     -4 12
# File lib/matrix.rb, line 986
def +(m)
  case m
  when Numeric
    Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
  when Vector
    m = self.class.column_vector(m)
  when Matrix
  else
    return apply_through_coercion(m, __method__)
  end

  Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count

  rows = Array.new(row_count) {|i|
    Array.new(column_count) {|j|
      self[i, j] + m[i, j]
    }
  }
  new_matrix rows, column_count
end
+@()
# File lib/matrix.rb, line 1143
def +@
  self
end
-(m)

Matrix subtraction.

Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
  => -8  2
      8  1
# File lib/matrix.rb, line 1013
def -(m)
  case m
  when Numeric
    Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
  when Vector
    m = self.class.column_vector(m)
  when Matrix
  else
    return apply_through_coercion(m, __method__)
  end

  Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count

  rows = Array.new(row_count) {|i|
    Array.new(column_count) {|j|
      self[i, j] - m[i, j]
    }
  }
  new_matrix rows, column_count
end
-@()
# File lib/matrix.rb, line 1147
def -@
  collect {|e| -e }
end
/(other)

Matrix division (multiplication by the inverse).

Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
  => -7  1
     -3 -6
# File lib/matrix.rb, line 1040
def /(other)
  case other
  when Numeric
    rows = @rows.collect {|row|
      row.collect {|e| e / other }
    }
    return new_matrix rows, column_count
  when Matrix
    return self * other.inverse
  else
    return apply_through_coercion(other, __method__)
  end
end
==(other)

Returns true if and only if the two matrices contain equal elements.

# File lib/matrix.rb, line 915
def ==(other)
  return false unless Matrix === other &&
                      column_count == other.column_count # necessary for empty matrices
  rows == other.rows
end
[](i, j)

Returns element (i,j) of the matrix. That is: row i, column j.

Also aliased as: element, component
# File lib/matrix.rb, line 372
def [](i, j)
  @rows.fetch(i){return nil}[j]
end
adjugate()

Returns the adjugate of the matrix.

Matrix[ [7,6],[3,9] ].adjugate
  => 9 -6
     -3 7
# File lib/matrix.rb, line 701
def adjugate
  Matrix.Raise ErrDimensionMismatch unless square?
  Matrix.build(row_count, column_count) do |row, column|
    cofactor(column, row)
  end
end
clone()

Returns a clone of the matrix, so that the contents of each do not reference identical objects. There should be no good reason to do this since Matrices are immutable.

# File lib/matrix.rb, line 932
def clone
  new_matrix @rows.map(&:dup), column_count
end
coerce(other)

The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce.

# File lib/matrix.rb, line 1457
def coerce(other)
  case other
  when Numeric
    return Scalar.new(other), self
  else
    raise TypeError, "#{self.class} can't be coerced into #{other.class}"
  end
end
cofactor(row, column)

Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).

Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
  => -108
# File lib/matrix.rb, line 686
def cofactor(row, column)
  raise RuntimeError, "cofactor of empty matrix is not defined" if empty?
  Matrix.Raise ErrDimensionMismatch unless square?

  det_of_minor = first_minor(row, column).determinant
  det_of_minor * (-1) ** (row + column)
end
cofactor_expansion(row: nil, column: nil)
Alias for: laplace_expansion
collect()

Returns a matrix that is the result of iteration of the given block over all elements of the matrix.

Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
  => 1  4
     9 16
Also aliased as: map
# File lib/matrix.rb, line 440
def collect(&block) # :yield: e
  return to_enum(:collect) unless block_given?
  rows = @rows.collect{|row| row.collect(&block)}
  new_matrix rows, column_count
end
column(j)

Returns column vector number j of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.

# File lib/matrix.rb, line 417
def column(j) # :yield: e
  if block_given?
    return self if j >= column_count || j < -column_count
    row_count.times do |i|
      yield @rows[i][j]
    end
    self
  else
    return nil if j >= column_count || j < -column_count
    col = Array.new(row_count) {|i|
      @rows[i][j]
    }
    Vector.elements(col, false)
  end
end
column_vectors()

Returns an array of the column vectors of the matrix. See Vector.

# File lib/matrix.rb, line 1478
def column_vectors
  Array.new(column_count) {|i|
    column(i)
  }
end
component(i, j)
Alias for: []
conj()
Alias for: conjugate
conjugate()

Returns the conjugate of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i   i  0
        1   2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
  => 1-2i  -i  0
        1   2  3
Also aliased as: conj
# File lib/matrix.rb, line 1403
def conjugate
  collect(&:conjugate)
end
det()
Alias for: determinant
det_e()
Alias for: determinant_e
determinant()

Returns the determinant of the matrix.

Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.

Matrix[[7,6], [3,9]].determinant
  => 45
Also aliased as: det
# File lib/matrix.rb, line 1165
def determinant
  Matrix.Raise ErrDimensionMismatch unless square?
  m = @rows
  case row_count
    # Up to 4x4, give result using Laplacian expansion by minors.
    # This will typically be faster, as well as giving good results
    # in case of Floats
  when 0
    +1
  when 1
    + m[0][0]
  when 2
    + m[0][0] * m[1][1] - m[0][1] * m[1][0]
  when 3
    m0, m1, m2 = m
    + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1]        - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0]        + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
  when 4
    m0, m1, m2, m3 = m
    + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2]        - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1]        + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1]        - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2]        + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0]        - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0]        + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1]        - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0]        + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0]        - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1]        + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0]        - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
  else
    # For bigger matrices, use an efficient and general algorithm.
    # Currently, we use the Gauss-Bareiss algorithm
    determinant_bareiss
  end
end
determinant_e()

deprecated; use #determinant

Also aliased as: det_e
# File lib/matrix.rb, line 1247
def determinant_e
  warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant"
  determinant
end
diagonal?()

Returns true if this is a diagonal matrix. Raises an error if matrix is not square.

# File lib/matrix.rb, line 747
def diagonal?
  Matrix.Raise ErrDimensionMismatch unless square?
  each(:off_diagonal).all?(&:zero?)
end
each(which = :all)

Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given. Elements can be restricted by passing an argument:

  • :all (default): yields all elements

  • :diagonal: yields only elements on the diagonal

  • :off_diagonal: yields all elements except on the diagonal

  • :lower: yields only elements on or below the diagonal

  • :strict_lower: yields only elements below the diagonal

  • :strict_upper: yields only elements above the diagonal

  • :upper: yields only elements on or above the diagonal

    Matrix[ [1,2], [3,4] ].each { |e| puts e }

    # => prints the numbers 1 to 4
    

    Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]

# File lib/matrix.rb, line 463
def each(which = :all) # :yield: e
  return to_enum :each, which unless block_given?
  last = column_count - 1
  case which
  when :all
    block = Proc.new
    @rows.each do |row|
      row.each(&block)
    end
  when :diagonal
    @rows.each_with_index do |row, row_index|
      yield row.fetch(row_index){return self}
    end
  when :off_diagonal
    @rows.each_with_index do |row, row_index|
      column_count.times do |col_index|
        yield row[col_index] unless row_index == col_index
      end
    end
  when :lower
    @rows.each_with_index do |row, row_index|
      0.upto([row_index, last].min) do |col_index|
        yield row[col_index]
      end
    end
  when :strict_lower
    @rows.each_with_index do |row, row_index|
      [row_index, column_count].min.times do |col_index|
        yield row[col_index]
      end
    end
  when :strict_upper
    @rows.each_with_index do |row, row_index|
      (row_index+1).upto(last) do |col_index|
        yield row[col_index]
      end
    end
  when :upper
    @rows.each_with_index do |row, row_index|
      row_index.upto(last) do |col_index|
        yield row[col_index]
      end
    end
  else
    raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
  end
  self
end
each_with_index(which = :all)

Same as each, but the row index and column index in addition to the element

Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
  puts "#{e} at #{row}, #{col}"
end
  # => Prints:
  #    1 at 0, 0
  #    2 at 0, 1
  #    3 at 1, 0
  #    4 at 1, 1
# File lib/matrix.rb, line 524
def each_with_index(which = :all) # :yield: e, row, column
  return to_enum :each_with_index, which unless block_given?
  last = column_count - 1
  case which
  when :all
    @rows.each_with_index do |row, row_index|
      row.each_with_index do |e, col_index|
        yield e, row_index, col_index
      end
    end
  when :diagonal
    @rows.each_with_index do |row, row_index|
      yield row.fetch(row_index){return self}, row_index, row_index
    end
  when :off_diagonal
    @rows.each_with_index do |row, row_index|
      column_count.times do |col_index|
        yield row[col_index], row_index, col_index unless row_index == col_index
      end
    end
  when :lower
    @rows.each_with_index do |row, row_index|
      0.upto([row_index, last].min) do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  when :strict_lower
    @rows.each_with_index do |row, row_index|
      [row_index, column_count].min.times do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  when :strict_upper
    @rows.each_with_index do |row, row_index|
      (row_index+1).upto(last) do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  when :upper
    @rows.each_with_index do |row, row_index|
      row_index.upto(last) do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  else
    raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
  end
  self
end
eigen()
Alias for: eigensystem
eigensystem()

Returns the Eigensystem of the matrix; see EigenvalueDecomposition.

m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
Also aliased as: eigen
# File lib/matrix.rb, line 1370
def eigensystem
  EigenvalueDecomposition.new(self)
end
element(i, j)
Alias for: []
elements_to_f()
# File lib/matrix.rb, line 1491
def elements_to_f
  warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)"
  map(&:to_f)
end
elements_to_i()
# File lib/matrix.rb, line 1496
def elements_to_i
  warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)"
  map(&:to_i)
end
elements_to_r()
# File lib/matrix.rb, line 1501
def elements_to_r
  warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)"
  map(&:to_r)
end
empty?()

Returns true if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.

# File lib/matrix.rb, line 756
def empty?
  column_count == 0 || row_count == 0
end
eql?(other)
# File lib/matrix.rb, line 921
def eql?(other)
  return false unless Matrix === other &&
                      column_count == other.column_count # necessary for empty matrices
  rows.eql? other.rows
end
find_index(*args)
Alias for: index
first_minor(row, column)

Returns the submatrix obtained by deleting the specified row and column.

Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
  => 9 0 0
     0 0 0
     0 0 4
# File lib/matrix.rb, line 659
def first_minor(row, column)
  raise RuntimeError, "first_minor of empty matrix is not defined" if empty?

  unless 0 <= row && row < row_count
    raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
  end

  unless 0 <= column && column < column_count
    raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
  end

  arrays = to_a
  arrays.delete_at(row)
  arrays.each do |array|
    array.delete_at(column)
  end

  new_matrix arrays, column_count - 1
end
hash()

Returns a hash-code for the matrix.

# File lib/matrix.rb, line 939
def hash
  @rows.hash
end
hermitian?()

Returns true if this is an hermitian matrix. Raises an error if matrix is not square.

# File lib/matrix.rb, line 764
def hermitian?
  Matrix.Raise ErrDimensionMismatch unless square?
  each_with_index(:upper).all? do |e, row, col|
    e == rows[col][row].conj
  end
end
hstack(*matrices)

Returns a new matrix resulting by stacking horizontally the receiver with the given matrices

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
# File lib/matrix.rb, line 1261
def hstack(*matrices)
  self.class.hstack(self, *matrices)
end
imag()
Alias for: imaginary
imaginary()

Returns the imaginary part of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i  i  0
        1  2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
  =>   2i  i  0
        0  0  0
Also aliased as: imag
# File lib/matrix.rb, line 1417
def imaginary
  collect(&:imaginary)
end
index(value, selector = :all) → [row, column]
index(selector = :all){ block } → [row, column]
index(selector = :all) → an_enumerator

The index method is specialized to return the index as [row, column] It also accepts an optional selector argument, see each for details.

Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
Also aliased as: find_index
# File lib/matrix.rb, line 587
def index(*args)
  raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
  which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
  return to_enum :find_index, which, *args unless block_given? || args.size == 1
  if args.size == 1
    value = args.first
    each_with_index(which) do |e, row_index, col_index|
      return row_index, col_index if e == value
    end
  else
    each_with_index(which) do |e, row_index, col_index|
      return row_index, col_index if yield e
    end
  end
  nil
end
inspect()

Overrides Object#inspect

# File lib/matrix.rb, line 1526
def inspect
  if empty?
    "#{self.class}.empty(#{row_count}, #{column_count})"
  else
    "#{self.class}#{@rows.inspect}"
  end
end
inv()
Alias for: inverse
inverse()

Returns the inverse of the matrix.

Matrix[[-1, -1], [0, -1]].inverse
  => -1  1
      0 -1
Also aliased as: inv
# File lib/matrix.rb, line 1060
def inverse
  Matrix.Raise ErrDimensionMismatch unless square?
  self.class.I(row_count).send(:inverse_from, self)
end
laplace_expansion(row: nil, column: nil)

Returns the Laplace expansion along given row or column.

Matrix[[7,6], [3,9]].laplace_expansion(column: 1)
 => 45

Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)
 => Vector[3, -2]
Also aliased as: cofactor_expansion
# File lib/matrix.rb, line 718
def laplace_expansion(row: nil, column: nil)
  num = row || column

  if !num || (row && column)
    raise ArgumentError, "exactly one the row or column arguments must be specified"
  end

  Matrix.Raise ErrDimensionMismatch unless square?
  raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?

  unless 0 <= num && num < row_count
    raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
  end

  send(row ? :row : :column, num).map.with_index { |e, k|
    e * cofactor(*(row ? [num, k] : [k,num]))
  }.inject(:+)
end
lower_triangular?()

Returns true if this is a lower triangular matrix.

# File lib/matrix.rb, line 774
def lower_triangular?
  each(:strict_upper).all?(&:zero?)
end
lup()

Returns the LUP decomposition of the matrix; see LUPDecomposition.

a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation?      # => true
l * u == p * a      # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
Also aliased as: lup_decomposition
# File lib/matrix.rb, line 1385
def lup
  LUPDecomposition.new(self)
end
lup_decomposition()
Alias for: lup
map()
Alias for: collect
minor(*param)

Returns a section of the matrix. The parameters are either:

  • start_row, nrows, start_col, ncols; OR

  • row_range, col_range

Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
  => 9 0 0
     0 5 0

Like Array#[], negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than #row_count or #column_count respectively.

# File lib/matrix.rb, line 618
def minor(*param)
  case param.size
  when 2
    row_range, col_range = param
    from_row = row_range.first
    from_row += row_count if from_row < 0
    to_row = row_range.end
    to_row += row_count if to_row < 0
    to_row += 1 unless row_range.exclude_end?
    size_row = to_row - from_row

    from_col = col_range.first
    from_col += column_count if from_col < 0
    to_col = col_range.end
    to_col += column_count if to_col < 0
    to_col += 1 unless col_range.exclude_end?
    size_col = to_col - from_col
  when 4
    from_row, size_row, from_col, size_col = param
    return nil if size_row < 0 || size_col < 0
    from_row += row_count if from_row < 0
    from_col += column_count if from_col < 0
  else
    raise ArgumentError, param.inspect
  end

  return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
  rows = @rows[from_row, size_row].collect{|row|
    row[from_col, size_col]
  }
  new_matrix rows, [column_count - from_col, size_col].min
end
normal?()

Returns true if this is a normal matrix. Raises an error if matrix is not square.

# File lib/matrix.rb, line 782
def normal?
  Matrix.Raise ErrDimensionMismatch unless square?
  rows.each_with_index do |row_i, i|
    rows.each_with_index do |row_j, j|
      s = 0
      rows.each_with_index do |row_k, k|
        s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
      end
      return false unless s == 0
    end
  end
  true
end
orthogonal?()

Returns true if this is an orthogonal matrix Raises an error if matrix is not square.

# File lib/matrix.rb, line 800
def orthogonal?
  Matrix.Raise ErrDimensionMismatch unless square?
  rows.each_with_index do |row, i|
    column_count.times do |j|
      s = 0
      row_count.times do |k|
        s += row[k] * rows[k][j]
      end
      return false unless s == (i == j ? 1 : 0)
    end
  end
  true
end
permutation?()

Returns true if this is a permutation matrix Raises an error if matrix is not square.

# File lib/matrix.rb, line 818
def permutation?
  Matrix.Raise ErrDimensionMismatch unless square?
  cols = Array.new(column_count)
  rows.each_with_index do |row, i|
    found = false
    row.each_with_index do |e, j|
      if e == 1
        return false if found || cols[j]
        found = cols[j] = true
      elsif e != 0
        return false
      end
    end
    return false unless found
  end
  true
end
rank()

Returns the rank of the matrix. Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.

Matrix[[7,6], [3,9]].rank
  => 2
# File lib/matrix.rb, line 1274
def rank
  # We currently use Bareiss' multistep integer-preserving gaussian elimination
  # (see comments on determinant)
  a = to_a
  last_column = column_count - 1
  last_row = row_count - 1
  pivot_row = 0
  previous_pivot = 1
  0.upto(last_column) do |k|
    switch_row = (pivot_row .. last_row).find {|row|
      a[row][k] != 0
    }
    if switch_row
      a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
      pivot = a[pivot_row][k]
      (pivot_row+1).upto(last_row) do |i|
         ai = a[i]
         (k+1).upto(last_column) do |j|
           ai[j] =  (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
         end
       end
      pivot_row += 1
      previous_pivot = pivot
    end
  end
  pivot_row
end
rank_e()

deprecated; use #rank

# File lib/matrix.rb, line 1305
def rank_e
  warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank"
  rank
end
real()

Returns the real part of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i  i  0
        1  2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
  =>    1  0  0
        1  2  3
# File lib/matrix.rb, line 1431
def real
  collect(&:real)
end
real?()

Returns true if all entries of the matrix are real.

# File lib/matrix.rb, line 839
def real?
  all?(&:real?)
end
rect()

Returns an array containing matrices corresponding to the real and imaginary parts of the matrix

m.rect == [m.real, m.imag] # ==> true for all matrices m

Also aliased as: rectangular
# File lib/matrix.rb, line 1441
def rect
  [real, imag]
end
rectangular()
Alias for: rect
regular?()

Returns true if this is a regular (i.e. non-singular) matrix.

# File lib/matrix.rb, line 846
def regular?
  not singular?
end
round(ndigits=0)

Returns a matrix with entries rounded to the given precision (see Float#round)

# File lib/matrix.rb, line 1313
def round(ndigits=0)
  map{|e| e.round(ndigits)}
end
row(i)

Returns row vector number i of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.

# File lib/matrix.rb, line 403
def row(i, &block) # :yield: e
  if block_given?
    @rows.fetch(i){return self}.each(&block)
    self
  else
    Vector.elements(@rows.fetch(i){return nil})
  end
end
row_count()

Returns the number of rows.

Also aliased as: row_size
# File lib/matrix.rb, line 388
def row_count
  @rows.size
end
row_size()
Alias for: row_count
row_vectors()

Returns an array of the row vectors of the matrix. See Vector.

# File lib/matrix.rb, line 1469
def row_vectors
  Array.new(row_count) {|i|
    row(i)
  }
end
singular?()

Returns true if this is a singular matrix.

# File lib/matrix.rb, line 853
def singular?
  determinant == 0
end
square?()

Returns true if this is a square matrix.

# File lib/matrix.rb, line 860
def square?
  column_count == row_count
end
symmetric?()

Returns true if this is a symmetric matrix. Raises an error if matrix is not square.

# File lib/matrix.rb, line 868
def symmetric?
  Matrix.Raise ErrDimensionMismatch unless square?
  each_with_index(:strict_upper) do |e, row, col|
    return false if e != rows[col][row]
  end
  true
end
t()
Alias for: transpose
to_a()

Returns an array of arrays that describe the rows of the matrix.

# File lib/matrix.rb, line 1487
def to_a
  @rows.collect(&:dup)
end
to_s()

Overrides Object#to_s

# File lib/matrix.rb, line 1513
def to_s
  if empty?
    "#{self.class}.empty(#{row_count}, #{column_count})"
  else
    "#{self.class}[" + @rows.collect{|row|
      "[" + row.collect{|e| e.to_s}.join(", ") + "]"
    }.join(", ")+"]"
  end
end
tr()
Alias for: trace
trace()

Returns the trace (sum of diagonal elements) of the matrix.

Matrix[[7,6], [3,9]].trace
  => 16
Also aliased as: tr
# File lib/matrix.rb, line 1322
def trace
  Matrix.Raise ErrDimensionMismatch unless square?
  (0...column_count).inject(0) do |tr, i|
    tr + @rows[i][i]
  end
end
transpose()

Returns the transpose of the matrix.

Matrix[[1,2], [3,4], [5,6]]
  => 1 2
     3 4
     5 6
Matrix[[1,2], [3,4], [5,6]].transpose
  => 1 3 5
     2 4 6
Also aliased as: t
# File lib/matrix.rb, line 1340
def transpose
  return self.class.empty(column_count, 0) if row_count.zero?
  new_matrix @rows.transpose, row_count
end
unitary?()

Returns true if this is a unitary matrix Raises an error if matrix is not square.

# File lib/matrix.rb, line 880
def unitary?
  Matrix.Raise ErrDimensionMismatch unless square?
  rows.each_with_index do |row, i|
    column_count.times do |j|
      s = 0
      row_count.times do |k|
        s += row[k].conj * rows[k][j]
      end
      return false unless s == (i == j ? 1 : 0)
    end
  end
  true
end
upper_triangular?()

Returns true if this is an upper triangular matrix.

# File lib/matrix.rb, line 897
def upper_triangular?
  each(:strict_lower).all?(&:zero?)
end
vstack(*matrices)

Returns a new matrix resulting by stacking vertically the receiver with the given matrices

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
# File lib/matrix.rb, line 1354
def vstack(*matrices)
  self.class.vstack(self, *matrices)
end
zero?()

Returns true if this is a matrix with only zero elements

# File lib/matrix.rb, line 904
def zero?
  all?(&:zero?)
end