The Processmodule is a collection of methods used to manipulate processes.

Namespace
Methods
A
D
E
F
G
I
K
M
P
S
T
U
W
Constants
WNOHANG = INT2FIX(WNOHANG)
 

see ::wait

WUNTRACED = INT2FIX(WUNTRACED)
 

see ::wait

PRIO_PROCESS = INT2FIX(PRIO_PROCESS)
 

see ::setpriority

PRIO_PGRP = INT2FIX(PRIO_PGRP)
 

see ::setpriority

PRIO_USER = INT2FIX(PRIO_USER)
 

see ::setpriority

RLIM_SAVED_MAX = v
 

see ::setrlimit

RLIM_INFINITY = inf
 

see ::setrlimit

RLIM_SAVED_CUR = v
 

see ::setrlimit

RLIMIT_AS = INT2FIX(RLIMIT_AS)
 

Maximum size of the process's virtual memory (address space) in bytes.

see the system getrlimit(2) manual for details.

RLIMIT_CORE = INT2FIX(RLIMIT_CORE)
 

Maximum size of the core file.

see the system getrlimit(2) manual for details.

RLIMIT_CPU = INT2FIX(RLIMIT_CPU)
 

CPU time limit in seconds.

see the system getrlimit(2) manual for details.

RLIMIT_DATA = INT2FIX(RLIMIT_DATA)
 

Maximum size of the process's data segment.

see the system getrlimit(2) manual for details.

RLIMIT_FSIZE = INT2FIX(RLIMIT_FSIZE)
 

Maximum size of files that the process may create.

see the system getrlimit(2) manual for details.

RLIMIT_MEMLOCK = INT2FIX(RLIMIT_MEMLOCK)
 

Maximum number of bytes of memory that may be locked into RAM.

see the system getrlimit(2) manual for details.

RLIMIT_MSGQUEUE = INT2FIX(RLIMIT_MSGQUEUE)
 

Specifies the limit on the number of bytes that can be allocated for POSIX message queues for the real user ID of the calling process.

see the system getrlimit(2) manual for details.

RLIMIT_NICE = INT2FIX(RLIMIT_NICE)
 

Specifies a ceiling to which the process's nice value can be raised.

see the system getrlimit(2) manual for details.

RLIMIT_NOFILE = INT2FIX(RLIMIT_NOFILE)
 

Specifies a value one greater than the maximum file descriptor number that can be opened by this process.

see the system getrlimit(2) manual for details.

RLIMIT_NPROC = INT2FIX(RLIMIT_NPROC)
 

The maximum number of processes that can be created for the real user ID of the calling process.

see the system getrlimit(2) manual for details.

RLIMIT_RSS = INT2FIX(RLIMIT_RSS)
 

Specifies the limit (in pages) of the process's resident set.

see the system getrlimit(2) manual for details.

RLIMIT_RTPRIO = INT2FIX(RLIMIT_RTPRIO)
 

Specifies a ceiling on the real-time priority that may be set for this process.

see the system getrlimit(2) manual for details.

RLIMIT_RTTIME = INT2FIX(RLIMIT_RTTIME)
 

Specifies limit on CPU time this process scheduled under a real-time scheduling policy can consume.

see the system getrlimit(2) manual for details.

RLIMIT_SBSIZE = INT2FIX(RLIMIT_SBSIZE)
 

Maximum size of the socket buffer.

RLIMIT_SIGPENDING = INT2FIX(RLIMIT_SIGPENDING)
 

Specifies a limit on the number of signals that may be queued for the real user ID of the calling process.

see the system getrlimit(2) manual for details.

RLIMIT_STACK = INT2FIX(RLIMIT_STACK)
 

Maximum size of the stack, in bytes.

see the system getrlimit(2) manual for details.

Class Public methods
abort Kernel::abort([msg]) Process::abort([msg])

Terminate execution immediately, effectively by calling Kernel.exit(false). If msgis given, it is written to STDERR prior to terminating.

VALUE
rb_f_abort(int argc, VALUE *argv)
{
    rb_secure(4);
    if (argc == 0) {
        if (!NIL_P(GET_THREAD()->errinfo)) {
            ruby_error_print();
        }
        rb_exit(EXIT_FAILURE);
    }
    else {
        VALUE args[2];

        rb_scan_args(argc, argv, "1", &args[1]);
        StringValue(argv[0]);
        rb_io_puts(argc, argv, rb_stderr);
        args[0] = INT2NUM(EXIT_FAILURE);
        rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
    }
    return Qnil;                /* not reached */
}
Process.daemon() → 0 Process.daemon(nochdir=nil,noclose=nil) → 0

Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.

static VALUE
proc_daemon(int argc, VALUE *argv)
{
    VALUE nochdir, noclose;
    int n;

    rb_secure(2);
    rb_scan_args(argc, argv, "02", &nochdir, &noclose);

    prefork();
    n = rb_daemon(RTEST(nochdir), RTEST(noclose));
    if (n < 0) rb_sys_fail("daemon");
    return INT2FIX(n);
}
Process.detach(pid) → thread

Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of wait(). If the parent never collects this status, the child stays around as a zombieprocess. Process::detach prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pidwhen it terminates. Use detachonly when you do not intent to explicitly wait for the child to terminate.

The waiting thread returns the exit status of the detached process when it terminates, so you can use Thread#jointo know the result. If specified pidis not a valid child process ID, the thread returns nilimmediately.

The waiting thread has pidmethod which returns the pid.

In this first example, we don't reap the first child process, so it appears as a zombie in the process status display.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

produces:

27389 Z

In the next example, Process::detachis used to reap the child automatically.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.detach(p1)
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

(produces no output)

static VALUE
proc_detach(VALUE obj, VALUE pid)
{
    rb_secure(2);
    return rb_detach_process(NUM2PIDT(pid));
}
Process.egid → fixnum Process::GID.eid → fixnum Process::Sys.geteid → fixnum

Returns the effective group ID for this process. Not available on all platforms.

Process.egid   #=> 500
static VALUE
proc_getegid(VALUE obj)
{
    rb_gid_t egid = getegid();

    return GIDT2NUM(egid);
}
Process.egid = fixnum → fixnum

Sets the effective group ID for this process. Not available on all platforms.

static VALUE
proc_setegid(VALUE obj, VALUE egid)
{
    rb_gid_t gid;

    check_gid_switch();

    gid = NUM2GIDT(egid);
#if defined(HAVE_SETRESGID)
    if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
    if (setregid(-1, gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEGID
    if (setegid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
    if (gid == getgid()) {
        if (setgid(gid) < 0) rb_sys_fail(0);
    }
    else {
        rb_notimplement();
    }
#else
    rb_notimplement();
#endif
    return egid;
}
Process.euid → fixnum Process::UID.eid → fixnum Process::Sys.geteuid → fixnum

Returns the effective user ID for this process.

Process.euid   #=> 501
static VALUE
proc_geteuid(VALUE obj)
{
    rb_uid_t euid = geteuid();
    return UIDT2NUM(euid);
}
Process.euid= integer

Sets the effective user ID for this process. Not available on all platforms.

static VALUE
proc_seteuid(VALUE obj, VALUE euid)
{
    rb_uid_t uid;

    check_uid_switch();

    uid = NUM2UIDT(euid);
#if defined(HAVE_SETRESUID)
    if (setresuid(-1, uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
    if (setreuid(-1, uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEUID
    if (seteuid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
    if (uid == getuid()) {
        if (setuid(uid) < 0) rb_sys_fail(0);
    }
    else {
        rb_notimplement();
    }
#else
    rb_notimplement();
#endif
    return euid;
}
exec([env,] command... [,options])

Replaces the current process by running the given external command. command…is one of following forms.

commandline                 : command line string which is passed to the standard shell
cmdname, arg1, ...          : command name and one or more arguments (no shell)
[cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)

If single string is given as the command, it is taken as a command line that is subject to shell expansion before being executed.

The standard shell means always "/bin/sh"on Unix-like systems, ENV["RUBYSHELL"]or ENV["COMSPEC"]on Windows NT series, and similar.

If two or more stringgiven, the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.

If a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as the argv[0]value, which may show up in process listings.

In order to execute the command, one of the exec(2)system calls is used, so the running command may inherit some of the environment of the original program (including open file descriptors). This behavior is modified by env and options. See spawnfor details.

Raises SystemCallError if the command couldn't execute (typically Errno::ENOENTwhen it was not found).

exec "echo *"       # echoes list of files in current directory
# never get here

exec "echo", "*"    # echoes an asterisk
# never get here
VALUE
rb_f_exec(int argc, VALUE *argv)
{
    struct rb_exec_arg earg;
#define CHILD_ERRMSG_BUFLEN 80
    char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };

    rb_exec_arg_init(argc, argv, TRUE, &earg);
    if (NIL_P(rb_ary_entry(earg.options, EXEC_OPTION_CLOSE_OTHERS)))
        rb_exec_arg_addopt(&earg, ID2SYM(rb_intern("close_others")), Qfalse);
    rb_exec_arg_fixup(&earg);

    rb_exec_err(&earg, errmsg, sizeof(errmsg));
    if (errmsg[0])
        rb_sys_fail(errmsg);
    rb_sys_fail(earg.prog);
    return Qnil;                /* dummy */
}
exit(status=true) Kernel::exit(status=true) Process::exit(status=true)

Initiates the termination of the Ruby script by raising the SystemExitexception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. trueand FALSEof status means success and failure respectively. The interpretation of other integer values are system dependent.

begin
  exit
  puts "never get here"
rescue SystemExit
  puts "rescued a SystemExit exception"
end
puts "after begin block"

produces:

rescued a SystemExit exception
after begin block

Just prior to termination, Ruby executes any at_exitfunctions (see Kernel::at_exit) and runs any object finalizers (see ObjectSpace.define_finalizer).

at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string",  proc { puts "in finalizer" })
exit

produces:

at_exit function
in finalizer
VALUE
rb_f_exit(int argc, VALUE *argv)
{
    VALUE status;
    int istatus;

    rb_secure(4);
    if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
        switch (status) {
          case Qtrue:
            istatus = EXIT_SUCCESS;
            break;
          case Qfalse:
            istatus = EXIT_FAILURE;
            break;
          default:
            istatus = NUM2INT(status);
#if EXIT_SUCCESS != 0
            if (istatus == 0)
                istatus = EXIT_SUCCESS;
#endif
            break;
        }
    }
    else {
        istatus = EXIT_SUCCESS;
    }
    rb_exit(istatus);
    return Qnil;                /* not reached */
}
Process.exit!(status=false)

Exits the process immediately. No exit handlers are run. statusis returned to the underlying system as the exit status.

Process.exit!(true)
static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
    VALUE status;
    int istatus;

    rb_secure(4);
    if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
        switch (status) {
          case Qtrue:
            istatus = EXIT_SUCCESS;
            break;
          case Qfalse:
            istatus = EXIT_FAILURE;
            break;
          default:
            istatus = NUM2INT(status);
            break;
        }
    }
    else {
        istatus = EXIT_FAILURE;
    }
    _exit(istatus);

    return Qnil;                /* not reached */
}
Kernel.fork [{ block }] → fixnum or nil Process.fork [{ block }] → fixnum or nil

Creates a subprocess. If a block is specified, that block is run in the subprocess, and the subprocess terminates with a status of zero. Otherwise, the forkcall returns twice, once in the parent, returning the process ID of the child, and once in the child, returning nil. The child process can exit using Kernel.exit!to avoid running any at_exitfunctions. The parent process should use Process.waitto collect the termination statuses of its children or use Process.detachto register disinterest in their status; otherwise, the operating system may accumulate zombie processes.

The thread calling fork is the only thread in the created child process. fork doesn't copy other threads.

If fork is not usable, Process.respond_to?(:fork) returns false.

static VALUE
rb_f_fork(VALUE obj)
{
    rb_pid_t pid;

    rb_secure(2);

    switch (pid = rb_fork(0, 0, 0, Qnil)) {
      case 0:
        rb_thread_atfork();
        if (rb_block_given_p()) {
            int status;

            rb_protect(rb_yield, Qundef, &status);
            ruby_stop(status);
        }
        return Qnil;

      case -1:
        rb_sys_fail("fork(2)");
        return Qnil;

      default:
        return PIDT2NUM(pid);
    }
}
Process.getpgid(pid) → integer

Returns the process group ID for the given process id. Not available on all platforms.

Process.getpgid(Process.ppid())   #=> 25527
static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
    rb_pid_t i;

    rb_secure(2);
    i = getpgid(NUM2PIDT(pid));
    if (i < 0) rb_sys_fail(0);
    return PIDT2NUM(i);
}
Process.getpgrp → integer

Returns the process group ID for this process. Not available on all platforms.

Process.getpgid(0)   #=> 25527
Process.getpgrp      #=> 25527
static VALUE
proc_getpgrp(void)
{
    rb_pid_t pgrp;

    rb_secure(2);
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
    pgrp = getpgrp();
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
    pgrp = getpgid(0);
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#endif
}
Process.getpriority(kind, integer) → fixnum

Gets the scheduling priority for specified process, process group, or user. kindindicates the kind of entity to find: one of Process::PRIO_PGRP, Process::PRIO_USER, or Process::PRIO_PROCESS. integeris an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.

Process.getpriority(Process::PRIO_USER, 0)      #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)   #=> 19
static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
    int prio, iwhich, iwho;

    rb_secure(2);
    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);

    errno = 0;
    prio = getpriority(iwhich, iwho);
    if (errno) rb_sys_fail(0);
    return INT2FIX(prio);
}
Process.getrlimit(resource) → [cur_limit, max_limit]

Gets the resource limit of the process. cur_limitmeans current (soft) limit and max_limitmeans maximum (hard) limit.

resourceindicates the kind of resource to limit. It is specified as a symbol such as :CORE, a string such as "CORE"or a constant such as Process::RLIMIT_CORE. See ::setrlimit for details.

cur_limitand max_limitmay be Process::RLIM_INFINITY, Process::RLIM_SAVED_MAX or Process::RLIM_SAVED_CUR. See ::setrlimit and the system getrlimit(2) manual for details.

static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
    struct rlimit rlim;

    rb_secure(2);

    if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
        rb_sys_fail("getrlimit");
    }
    return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}
Process.gid → fixnum Process::GID.rid → fixnum Process::Sys.getgid → fixnum

Returns the (real) group ID for this process.

Process.gid   #=> 500
static VALUE
proc_getgid(VALUE obj)
{
    rb_gid_t gid = getgid();
    return GIDT2NUM(gid);
}
Process.gid= fixnum → fixnum

Sets the group ID for this process.

static VALUE
proc_setgid(VALUE obj, VALUE id)
{
    rb_gid_t gid;

    check_gid_switch();

    gid = NUM2GIDT(id);
#if defined(HAVE_SETRESGID)
    if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
    if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
    if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
    {
        if (getegid() == gid) {
            if (setgid(gid) < 0) rb_sys_fail(0);
        }
        else {
            rb_notimplement();
        }
    }
#endif
    return GIDT2NUM(gid);
}
Process.groups → array

Get an Arrayof the gids of groups in the supplemental group access list for this process.

Process.groups   #=> [27, 6, 10, 11]
static VALUE
proc_getgroups(VALUE obj)
{
    VALUE ary;
    int i, ngroups;
    rb_gid_t *groups;

    ngroups = getgroups(0, NULL);
    if (ngroups == -1)
        rb_sys_fail(0);

    groups = ALLOCA_N(rb_gid_t, ngroups);

    ngroups = getgroups(ngroups, groups);
    if (ngroups == -1)
        rb_sys_fail(0);

    ary = rb_ary_new();
    for (i = 0; i < ngroups; i++)
        rb_ary_push(ary, GIDT2NUM(groups[i]));

    return ary;
}
Process.groups= array → array

Set the supplemental group access list to the given Arrayof group IDs.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.groups = [27, 6, 10, 11]   #=> [27, 6, 10, 11]
Process.groups   #=> [27, 6, 10, 11]
static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
    int ngroups, i;
    rb_gid_t *groups;
#ifdef HAVE_GETGRNAM_R
    long getgr_buf_len = sysconf(_SC_GETGR_R_SIZE_MAX);
    char* getgr_buf;

    if (getgr_buf_len < 0)
        getgr_buf_len = 4096;
    getgr_buf = ALLOCA_N(char, getgr_buf_len);
#endif

    Check_Type(ary, T_ARRAY);

    ngroups = RARRAY_LENINT(ary);
    if (ngroups > maxgroups())
        rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());

    groups = ALLOCA_N(rb_gid_t, ngroups);

    for (i = 0; i < ngroups; i++) {
        VALUE g = RARRAY_PTR(ary)[i];

        if (FIXNUM_P(g)) {
            groups[i] = NUM2GIDT(g);
        }
        else {
            VALUE tmp = rb_check_string_type(g);
            struct group grp;
            struct group *p;
            int ret;

            if (NIL_P(tmp)) {
                groups[i] = NUM2GIDT(g);
            }
            else {
                const char *grpname = StringValueCStr(tmp);

#ifdef HAVE_GETGRNAM_R
                ret = getgrnam_r(grpname, &grp, getgr_buf, getgr_buf_len, &p);
                if (ret)
                    rb_sys_fail("getgrnam_r");
#else
                p = getgrnam(grpname);
#endif
                if (p == NULL) {
                    rb_raise(rb_eArgError,
                             "can't find group for %s", RSTRING_PTR(tmp));
                }
                groups[i] = p->gr_gid;
            }
        }
    }

    if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
        rb_sys_fail(0);

    return proc_getgroups(obj);
}
Process.initgroups(username, gid) → array

Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gidis also added to the list. Returns the resulting Arrayof the gids of all the groups in the supplementary group access list. Not available on all platforms.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.initgroups( "mgranger", 30 )   #=> [30, 6, 10, 11]
Process.groups   #=> [30, 6, 10, 11]
static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
    if (initgroups(StringValuePtr(uname), NUM2GIDT(base_grp)) != 0) {
        rb_sys_fail(0);
    }
    return proc_getgroups(obj);
}
Process.kill(signal, pid, ...) → fixnum

Sends the given signal to the specified process id(s), or to the current process if pidis zero. signalmay be an integer signal number or a POSIX signal name (either with or without a SIG prefix). If signalis negative (or starts with a minus sign), kills process groups instead of processes. Not all signals are available on all platforms.

pid = fork do
   Signal.trap("HUP") { puts "Ouch!"; exit }
   # ... do some work ...
end
# ...
Process.kill("HUP", pid)
Process.wait

produces:

Ouch!

If signalis an integer but wrong for signal, Errno::EINVALor RangeErrorwill be raised. Otherwise unless signalis a Stringor a Symbol, and a known signal name, ArgumentError will be raised.

Also, Errno::ESRCHor RangeErrorfor invalid pid, Errno::EPERMwhen failed because of no privilege, will be raised. In these cases, signals may have been sent to preceding processes.

VALUE
rb_f_kill(int argc, VALUE *argv)
{
#ifndef HAS_KILLPG
#define killpg(pg, sig) kill(-(pg), (sig))
#endif
    int negative = 0;
    int sig;
    int i;
    volatile VALUE str;
    const char *s;

    rb_secure(2);
    if (argc < 2)
  rb_raise(rb_eArgError, "wrong number of arguments (%d for at least 2)", argc);
    switch (TYPE(argv[0])) {
      case T_FIXNUM:
  sig = FIX2INT(argv[0]);
  break;

      case T_SYMBOL:
  s = rb_id2name(SYM2ID(argv[0]));
  if (!s) rb_raise(rb_eArgError, "bad signal");
  goto str_signal;

      case T_STRING:
  s = RSTRING_PTR(argv[0]);
      str_signal:
  if (s[0] == '-') {
      negative++;
      s++;
  }
  if (strncmp("SIG", s, 3) == 0)
      s += 3;
  if((sig = signm2signo(s)) == 0)
      rb_raise(rb_eArgError, "unsupported name `SIG%s'", s);

  if (negative)
      sig = -sig;
  break;

      default:
  str = rb_check_string_type(argv[0]);
  if (!NIL_P(str)) {
      s = RSTRING_PTR(str);
      goto str_signal;
  }
  rb_raise(rb_eArgError, "bad signal type %s",
     rb_obj_classname(argv[0]));
  break;
    }

    if (sig < 0) {
  sig = -sig;
  for (i=1; i<argc; i++) {
      if (killpg(NUM2PIDT(argv[i]), sig) < 0)
    rb_sys_fail(0);
  }
    }
    else {
  for (i=1; i<argc; i++) {
      if (kill(NUM2PIDT(argv[i]), sig) < 0)
    rb_sys_fail(0);
  }
    }
    rb_thread_polling();
    return INT2FIX(i-1);
}
Process.maxgroups → fixnum

Returns the maximum number of gids allowed in the supplemental group access list.

Process.maxgroups   #=> 32
static VALUE
proc_getmaxgroups(VALUE obj)
{
    return INT2FIX(maxgroups());
}
Process.maxgroups= fixnum → fixnum

Sets the maximum number of gids allowed in the supplemental group access list.

static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
    int ngroups = FIX2INT(val);
    int ngroups_max = get_sc_ngroups_max();

    if (ngroups <= 0)
        rb_raise(rb_eArgError, "maxgroups %d shold be positive", ngroups);

    if (ngroups > RB_MAX_GROUPS)
        ngroups = RB_MAX_GROUPS;

    if (ngroups_max > 0 && ngroups > ngroups_max)
        ngroups = ngroups_max;

    _maxgroups = ngroups;

    return INT2FIX(_maxgroups);
}
Process.pid → fixnum

Returns the process id of this process. Not available on all platforms.

Process.pid   #=> 27415
static VALUE
get_pid(void)
{
    rb_secure(2);
    return PIDT2NUM(getpid());
}
Process.ppid → fixnum

Returns the process id of the parent of this process. Returns untrustworthy value on Win32/64. Not available on all platforms.

puts "I am #{Process.pid}"
Process.fork { puts "Dad is #{Process.ppid}" }

produces:

I am 27417
Dad is 27417
static VALUE
get_ppid(void)
{
    rb_secure(2);
    return PIDT2NUM(getppid());
}
Process.setpgid(pid, integer) → 0

Sets the process group ID of pid(0 indicates this process) to integer. Not available on all platforms.

static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
    rb_pid_t ipid, ipgrp;

    rb_secure(2);
    ipid = NUM2PIDT(pid);
    ipgrp = NUM2PIDT(pgrp);

    if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
    return INT2FIX(0);
}
Process.setpgrp → 0

Equivalent to setpgid(0,0). Not available on all platforms.

static VALUE
proc_setpgrp(void)
{
    rb_secure(2);
  /* check for posix setpgid() first; this matches the posix */
  /* getpgrp() above.  It appears that configure will set SETPGRP_VOID */
  /* even though setpgrp(0,0) would be preferred. The posix call avoids */
  /* this confusion. */
#ifdef HAVE_SETPGID
    if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
    if (setpgrp() < 0) rb_sys_fail(0);
#endif
    return INT2FIX(0);
}
Process.setpriority(kind, integer, priority) → 0

See Process#getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19)      #=> 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19)   #=> 0
Process.getpriority(Process::PRIO_USER, 0)          #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)       #=> 19
static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
    int iwhich, iwho, iprio;

    rb_secure(2);
    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);
    iprio  = NUM2INT(prio);

    if (setpriority(iwhich, iwho, iprio) < 0)
        rb_sys_fail(0);
    return INT2FIX(0);
}
Process.setrlimit(resource, cur_limit, max_limit) → nil Process.setrlimit(resource, cur_limit) → nil

Sets the resource limit of the process. cur_limitmeans current (soft) limit and max_limitmeans maximum (hard) limit.

If max_limitis not given, cur_limitis used.

resourceindicates the kind of resource to limit. It should be a symbol such as :CORE, a string such as "CORE"or a constant such as Process::RLIMIT_CORE. The available resources are OS dependent. Ruby may support following resources.

AS

total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)

CORE

core size (bytes) (SUSv3)

CPU

CPU time (seconds) (SUSv3)

DATA

data segment (bytes) (SUSv3)

FSIZE

file size (bytes) (SUSv3)

MEMLOCK

total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)

MSGQUEUE

allocation for POSIX message queues (bytes) (GNU/Linux)

NICE

ceiling on process's nice(2) value (number) (GNU/Linux)

NOFILE

file descriptors (number) (SUSv3)

NPROC

number of processes for the user (number) (4.4BSD, GNU/Linux)

RSS

resident memory size (bytes) (4.2BSD, GNU/Linux)

RTPRIO

ceiling on the process's real-time priority (number) (GNU/Linux)

RTTIME

CPU time for real-time process (us) (GNU/Linux)

SBSIZE

all socket buffers (bytes) (NetBSD, FreeBSD)

SIGPENDING

number of queued signals allowed (signals) (GNU/Linux)

STACK

stack size (bytes) (SUSv3)

cur_limitand max_limitmay be :INFINITY, "INFINITY"or Process::RLIM_INFINITY, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX, Process::RLIM_SAVED_CUR and corresponding symbols and strings too. See system setrlimit(2) manual for details.

The following example raises the soft limit of core size to the hard limit to try to make core dump possible.

Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
    VALUE resource, rlim_cur, rlim_max;
    struct rlimit rlim;

    rb_secure(2);

    rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max);
    if (rlim_max == Qnil)
        rlim_max = rlim_cur;

    rlim.rlim_cur = rlimit_resource_value(rlim_cur);
    rlim.rlim_max = rlimit_resource_value(rlim_max);

    if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
        rb_sys_fail("setrlimit");
    }
    return Qnil;
}
Process.setsid → fixnum

Establishes this process as a new session and process group leader, with no controlling tty. Returns the session id. Not available on all platforms.

Process.setsid   #=> 27422
static VALUE
proc_setsid(void)
{
    rb_pid_t pid;

    rb_secure(2);
    pid = setsid();
    if (pid < 0) rb_sys_fail(0);
    return PIDT2NUM(pid);
}
spawn([env,] command... [,options]) → pid Process.spawn([env,] command... [,options]) → pid

spawn executes specified command and return its pid.

This method doesn't wait for end of the command. The parent process should use Process.waitto collect the termination status of its child or use Process.detachto register disinterest in their status; otherwise, the operating system may accumulate zombie processes.

spawn has bunch of options to specify process attributes:

env: hash
  name => val : set the environment variable
  name => nil : unset the environment variable
command...:
  commandline                 : command line string which is passed to the standard shell
  cmdname, arg1, ...          : command name and one or more arguments (no shell)
  [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
options: hash
  clearing environment variables:
    :unsetenv_others => true   : clear environment variables except specified by env
    :unsetenv_others => false  : don't clear (default)
  process group:
    :pgroup => true or 0 : make a new process group
    :pgroup => pgid      : join to specified process group
    :pgroup => nil       : don't change the process group (default)
  create new process group: Windows only
    :new_pgroup => true  : the new process is the root process of a new process group
    :new_pgroup => false : don't create a new process group (default)
  resource limit: resourcename is core, cpu, data, etc.  See Process.setrlimit.
    :rlimit_resourcename => limit
    :rlimit_resourcename => [cur_limit, max_limit]
  current directory:
    :chdir => str
  umask:
    :umask => int
  redirection:
    key:
      FD              : single file descriptor in child process
      [FD, FD, ...]   : multiple file descriptor in child process
    value:
      FD                        : redirect to the file descriptor in parent process
      string                    : redirect to file with open(string, "r" or "w")
      [string]                  : redirect to file with open(string, File::RDONLY)
      [string, open_mode]       : redirect to file with open(string, open_mode, 0644)
      [string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
      [:child, FD]              : redirect to the redirected file descriptor
      :close                    : close the file descriptor in child process
    FD is one of follows
      :in     : the file descriptor 0 which is the standard input
      :out    : the file descriptor 1 which is the standard output
      :err    : the file descriptor 2 which is the standard error
      integer : the file descriptor of specified the integer
      io      : the file descriptor specified as io.fileno
  file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
    :close_others => false : inherit fds (default for system and exec)
    :close_others => true  : don't inherit (default for spawn and IO.popen)

If a hash is given as env, the environment is updated by envbefore exec(2)in the child process. If a pair in envhas nil as the value, the variable is deleted.

# set FOO as BAR and unset BAZ.
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)

If a hash is given as options, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.

The :unsetenv_otherskey in optionsspecifies to clear environment variables, other than specified by env.

pid = spawn(command, :unsetenv_others=>true) # no environment variable
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only

The :pgroupkey in optionsspecifies a process group. The corresponding value should be true, zero or positive integer. true and zero means the process should be a process leader of a new process group. Other values specifies a process group to be belongs.

pid = spawn(command, :pgroup=>true) # process leader
pid = spawn(command, :pgroup=>10) # belongs to the process group 10

The :new_pgroupkey in optionsspecifies to pass CREATE_NEW_PROCESS_GROUPflag to CreateProcessW() that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid) on the subprocess. :new_pgroup is false by default.

pid = spawn(command, :new_pgroup=>true)  # new process group
pid = spawn(command, :new_pgroup=>false) # same process group

The :rlimit_ fookey specifies a resource limit. fooshould be one of resource types such as core. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for ::setrlimit.

cur, max = Process.getrlimit(:CORE)
pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
pid = spawn(command, :rlimit_core=>max) # enable core dump
pid = spawn(command, :rlimit_core=>0) # never dump core.

The :chdirkey in optionsspecifies the current directory.

pid = spawn(command, :chdir=>"/var/tmp")

The :umaskkey in optionsspecifies the umask.

pid = spawn(command, :umask=>077)

The :in, :out, :err, a fixnum, an IO and an array key specifies a redirection. The redirection maps a file descriptor in the child process.

For example, stderr can be merged into stdout as follows:

pid = spawn(command, :err=>:out)
pid = spawn(command, 2=>1)
pid = spawn(command, STDERR=>:out)
pid = spawn(command, STDERR=>STDOUT)

The hash keys specifies a file descriptor in the child process started by spawn. :err, 2 and STDERR specifies the standard error stream (stderr).

The hash values specifies a file descriptor in the parent process which invokes spawn. :out, 1 and STDOUT specifies the standard output stream (stdout).

In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.

The standard input stream (stdin) can be specified by :in, 0 and STDIN.

A filename can be specified as a hash value.

pid = spawn(command, :in=>"/dev/null") # read mode
pid = spawn(command, :out=>"/dev/null") # write mode
pid = spawn(command, :err=>"log") # write mode
pid = spawn(command, 3=>"/dev/null") # read mode

For stdout and stderr, it is opened in write mode. Otherwise read mode is used.

For specifying flags and permission of file creation explicitly, an array is used instead.

pid = spawn(command, :in=>["file"]) # read mode is assumed
pid = spawn(command, :in=>["file", "r"])
pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
pid = spawn(command, :out=>["log", "w", 0600])
pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])

The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.

If an array of IOs and integers are specified as a hash key, all the elements are redirected.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, [:out, :err]=>["log", "w"])

Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differs if stdout is redirected in the child process as follows.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])

[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.

io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
p io.read #=> "out\nerr\n"

spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn't affect the standard descriptors which are closed only if :close is specified explicitly.

pid = spawn(command, :close_others=>true)  # close 3,4,5,... (default)
pid = spawn(command, :close_others=>false) # don't close 3,4,5,...

:close_others is true by default for spawn and IO.popen.

So IO.pipe and spawn can be used as IO.popen.

# similar to r = IO.popen(command)
r, w = IO.pipe
pid = spawn(command, :out=>w)   # r, w is closed in the child process.
w.close

:close is specified as a hash value to close a fd individually.

f = open(foo)
system(command, f=>:close)        # don't inherit f.

If a file descriptor need to be inherited, io=>io can be used.

# valgrind has --log-fd option for log destination.
# log_w=>log_w indicates log_w.fileno inherits to child process.
log_r, log_w = IO.pipe
pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
log_w.close
p log_r.read

It is also possible to exchange file descriptors.

pid = spawn(command, :out=>:err, :err=>:out)

The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawnuses an extra file descriptor to resolve such cyclic file descriptor mapping.

See Kernel.execfor the standard shell.

static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
    rb_pid_t pid;
    char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
    struct rb_exec_arg earg;

    pid = rb_spawn_process(&earg, rb_exec_arg_prepare(&earg, argc, argv, TRUE), errmsg, sizeof(errmsg));
    if (pid == -1) {
        const char *prog = errmsg;
        if (!prog[0] && !(prog = earg.prog) && earg.argc) {
            prog = RSTRING_PTR(earg.argv[0]);
        }
        rb_sys_fail(prog);
    }
#if defined(HAVE_FORK) || defined(HAVE_SPAWNV)
    return PIDT2NUM(pid);
#else
    return Qnil;
#endif
}
Process.times → aStructTms

Returns a Tmsstructure (see Struct::Tms) that contains user and system CPU times for this process, and also for children processes.

t = Process.times
[ t.utime, t.stime, t.cutime, t.cstime ]   #=> [0.0, 0.02, 0.00, 0.00]
VALUE
rb_proc_times(VALUE obj)
{
    const double hertz =
#ifdef HAVE__SC_CLK_TCK
        (double)sysconf(_SC_CLK_TCK);
#else
#ifndef HZ
# ifdef CLK_TCK
#   define HZ CLK_TCK
# else
#   define HZ 60
# endif
#endif /* HZ */
        HZ;
#endif
    struct tms buf;
    volatile VALUE utime, stime, cutime, sctime;

    times(&buf);
    return rb_struct_new(rb_cProcessTms,
                         utime = DBL2NUM(buf.tms_utime / hertz),
                         stime = DBL2NUM(buf.tms_stime / hertz),
                         cutime = DBL2NUM(buf.tms_cutime / hertz),
                         sctime = DBL2NUM(buf.tms_cstime / hertz));
}
Process.uid → fixnum Process::UID.rid → fixnum Process::Sys.getuid → fixnum

Returns the (real) user ID of this process.

Process.uid   #=> 501
static VALUE
proc_getuid(VALUE obj)
{
    rb_uid_t uid = getuid();
    return UIDT2NUM(uid);
}
Process.uid= integer → numeric

Sets the (integer) user ID for this process. Not available on all platforms.

static VALUE
proc_setuid(VALUE obj, VALUE id)
{
    rb_uid_t uid;

    check_uid_switch();

    uid = NUM2UIDT(id);
#if defined(HAVE_SETRESUID)
    if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
    if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
    if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
    {
        if (geteuid() == uid) {
            if (setuid(uid) < 0) rb_sys_fail(0);
        }
        else {
            rb_notimplement();
        }
    }
#endif
    return id;
}
Process.wait() → fixnum Process.wait(pid=-1, flags=0) → fixnum Process.waitpid(pid=-1, flags=0) → fixnum

Waits for a child process to exit, returns its process id, and sets $?to a Process::Statusobject containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pidis given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flagsargument may be a logical or of the flag values Process::WNOHANG(do not block if no child available) or Process::WUNTRACED(return stopped children that haven't been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemErrorif there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900
static VALUE
proc_wait(int argc, VALUE *argv)
{
    VALUE vpid, vflags;
    rb_pid_t pid;
    int flags, status;

    rb_secure(2);
    flags = 0;
    if (argc == 0) {
        pid = -1;
    }
    else {
        rb_scan_args(argc, argv, "02", &vpid, &vflags);
        pid = NUM2PIDT(vpid);
        if (argc == 2 && !NIL_P(vflags)) {
            flags = NUM2UINT(vflags);
        }
    }
    if ((pid = rb_waitpid(pid, &status, flags)) < 0)
        rb_sys_fail(0);
    if (pid == 0) {
        rb_last_status_clear();
        return Qnil;
    }
    return PIDT2NUM(pid);
}
Process.wait2(pid=-1, flags=0) → [pid, status] Process.waitpid2(pid=-1, flags=0) → [pid, status]

Waits for a child process to exit (see ::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Statusobject) of that child. Raises a SystemErrorif there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99
static VALUE
proc_wait2(int argc, VALUE *argv)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}
Process.waitall → [ [pid1,status1], ...]

Waits for all children, returning an array of pid/ status pairs (where statusis a Process::Statusobject).

fork { sleep 0.2; exit 2 }   #=> 27432
fork { sleep 0.1; exit 1 }   #=> 27433
fork {            exit 0 }   #=> 27434
p Process.waitall

produces:

[[30982, #<Process::Status: pid 30982 exit 0>],
 [30979, #<Process::Status: pid 30979 exit 1>],
 [30976, #<Process::Status: pid 30976 exit 2>]]
static VALUE
proc_waitall(void)
{
    VALUE result;
    rb_pid_t pid;
    int status;

    rb_secure(2);
    result = rb_ary_new();
#ifdef NO_WAITPID
    if (pid_tbl) {
        st_foreach(pid_tbl, waitall_each, result);
    }
#else
    rb_last_status_clear();
#endif

    for (pid = -1;;) {
#ifdef NO_WAITPID
        pid = wait(&status);
#else
        pid = rb_waitpid(-1, &status, 0);
#endif
        if (pid == -1) {
            if (errno == ECHILD)
                break;
#ifdef NO_WAITPID
            if (errno == EINTR) {
                rb_thread_schedule();
                continue;
            }
#endif
            rb_sys_fail(0);
        }
#ifdef NO_WAITPID
        rb_last_status_set(status, pid);
#endif
        rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
    }
    return result;
}
Process.wait() → fixnum Process.wait(pid=-1, flags=0) → fixnum Process.waitpid(pid=-1, flags=0) → fixnum

Waits for a child process to exit, returns its process id, and sets $?to a Process::Statusobject containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pidis given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flagsargument may be a logical or of the flag values Process::WNOHANG(do not block if no child available) or Process::WUNTRACED(return stopped children that haven't been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemErrorif there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900
static VALUE
proc_wait(int argc, VALUE *argv)
{
    VALUE vpid, vflags;
    rb_pid_t pid;
    int flags, status;

    rb_secure(2);
    flags = 0;
    if (argc == 0) {
        pid = -1;
    }
    else {
        rb_scan_args(argc, argv, "02", &vpid, &vflags);
        pid = NUM2PIDT(vpid);
        if (argc == 2 && !NIL_P(vflags)) {
            flags = NUM2UINT(vflags);
        }
    }
    if ((pid = rb_waitpid(pid, &status, flags)) < 0)
        rb_sys_fail(0);
    if (pid == 0) {
        rb_last_status_clear();
        return Qnil;
    }
    return PIDT2NUM(pid);
}
Process.wait2(pid=-1, flags=0) → [pid, status] Process.waitpid2(pid=-1, flags=0) → [pid, status]

Waits for a child process to exit (see ::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Statusobject) of that child. Raises a SystemErrorif there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99
static VALUE
proc_wait2(int argc, VALUE *argv)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}